jueves, 27 de octubre de 2016

QUE SON LOS ANTICUERPOS.




Los anticuerpos (también conocidos como inmunoglobulinas, abreviado Ig) son glicoproteínas del tipo gamma globulina. Pueden encontrarse de forma soluble en la sangre u otros fluidos corporales de los vertebrados, disponiendo de una forma idéntica que actúa como receptor de los linfocitos B y son empleados por el sistema inmunitario para identificar y neutralizar elementos extraños tales como bacteriasvirus o parásitos.1
El anticuerpo típico está constituido por unidades estructurales básicas, cada una de ellas con dos grandes cadenas pesadas y dos cadenas ligeras de menor tamaño, que forman, por ejemplo, monómeros con una unidad, dímeros con dos unidades o pentámeros con cinco unidades. Los anticuerpos son sintetizados por un tipo de leucocito denominado linfocito B. Existen distintas modalidades de anticuerpo, isotipos, basadas en la forma de cadena pesada que posean. Se conocen cinco clases diferentes de isotipos en mamíferos que desempeñan funciones diferentes, contribuyendo a dirigir la respuesta inmune adecuada para cada distinto tipo de cuerpo extraño que encuentran.2
Aunque la estructura general de todos los anticuerpos es muy semejante, una pequeña región del ápice de la proteína es extremadamente variable, lo cual permite la existencia de millones de anticuerpos, cada uno con un extremo ligeramente distinto. A esta parte de la proteína se la conoce como región hipervariable. Cada una de estas variantes se puede unir a una "diana" distinta, que es lo que se conoce como antígeno.3 Esta enorme diversidad de anticuerpos permite al sistema inmune reconocer una diversidad igualmente elevada de antígenos. La única parte del antígeno reconocida por el anticuerpo se denomina epítopo. Estos epítopos se unen con su anticuerpo en una interacción altamente específica que se denomina adaptación inducida, que permite a los anticuerpos identificar y unirse solamente a su antígeno único en medio de los millones de moléculas diferentes que componen un organismo.

TIPOS DE VACUNAS.


Las vacunas pueden estar compuestas de bacterias o virus, ya sean vivos o debilitados, que han sido criados con tal fin. Las vacunas también pueden contener organismos inactivos o productos purificados provenientes de aquellos primeros. Hay cinco tipos de vacunas:
  • Inactivadas: microorganismos dañinos que han sido tratados con productos químicos o calor y han perdido su peligro. Este tipo de vacunas activa el sistema inmune pero es incapaz de reproducirse en el huésped. La inmunidad generada de esta forma es de menor intensidad y suele durar menos tiempo, por lo que este tipo de vacuna suele requerir más dosis. Dado que la respuesta inmune lograda es menor, se utilizan en estas vacunas unas sustancias denominadas adyuvantes. Estas sustancias están sirven a la vacuna a aumentar la respuesta inmunitaria del organismo. Ejemplos de este tipo son: la gripecólerapeste bubónica y la hepatitis A.
  • Vivas atenuadas: microorganismos que han sido cultivados expresamente bajo condiciones en las cuales pierden o atenúan sus propiedades patógenas. Suelen provocar una respuesta inmunológica más duradera, y son las más usuales en los adultos. Esto se debe a que el microorganismo no se encuentra inactivado y conserva su estructura. Por eso, en muchas ocasiones puede provocar la enfermedad en personas inmunodeprimidas. Por ejemplo: la fiebre amarillasarampión o rubéola (también llamada sarampión alemán) y paperas.
  • Toxoides: son componentes tóxicos inactivados procedentes de microorganismos, en casos donde esos componentes son los que de verdad provocan la enfermedad, en lugar del propio microorganismo. Estos componentes se podrían inactivar con formaldehído, por ejemplo. En este grupo se pueden encontrar el tétanos y la difteria.
  • Acelulares: consisten en una mezcla de componentes subcelulares purificados del patógeno contra el que se quiere inmunizar, que normalmente consta de proteínas antigénicas altamente inmunogénicas y que pueden contener toxoides. Una vacuna de este tipo se utiliza en la actualidad contra la tos ferina.
  • Recombinantes de subunidad: se utiliza la tecnología del ADN recombinante para introducir el gen codificante para un antígeno altamente inmunogénico en el genoma de un microorganismo productor (como E. coli o S. cerevisiae) con el objetivo de superproducir y purificar la proteína antigénica, que será la base de una vacuna. Estas técnicas de producción de vacunas son muy útiles cuando el patógeno contra el que se quiere inmunizar es difícil de cultivar in vitro. Un ejemplo característico es la vacuna subunitaria contra la hepatitis B, que está compuesta solamente por la superficie del virus (superficie formada por proteínas). Para obtener esta vacuna, se clonó el gen S del hepadnavirus causante de la hepatitis B en S. cerevisiae y se superprodujo y purificó, dando como resultado y vacuna efectiva (el gen S codifica el antígeno de HBsAg autoensamblable localizado en la superficie del virus). Un tipo particular de vacunas recombinantes serían las vacunas comestibles, producidas mediante plantas transgénicas. En estos casos, el transgén transferido a la planta sería uno codificante para un antígeno de interés, que producirá una respuesta inmune. Para tratarse de una vacuna comestible, la expresión del transgén debe estar dirigida por un promotor específico de tejido, que haga que se exprese sólo en determinados órganos comestibles, como las semillas de los cereales o los tubérculos. Las grandes ventajas de la producción de vacunas comestibles residen en su bajo coste de producción, en que el antígeno puede expresarse en órganos en los que sea estable a temperatura ambiente (como los mencionados anteriormente), lo que eliminaría los costes de mantener la cadena del frío, y en la posibilidad de expresar de forma simultánea varios antígenos y adyuvantes en el mismo órgano de la planta. Por supuesto, este sistema de producción también posee inconvenientes, como el control sobre el nivel de expresión del antígeno, la homogeneidad de la expresión (ajuste de dosis) o el mantenimiento de la integridad del antígeno ante sus exposición a jugos gástricos e intestinales. Hasta ahora, los trabajos más representativos en este tema han tratado sobre la producción de la vacuna contra la hepatitis B, dando resultados satisfactorios al inmunizar ratones que comieron patata en la que se acumuló el antígeno.
La vacuna contra la tuberculosis por ejemplo, es la llamada vacuna BCG (Bacilo de Calmette y Guerin, que debe su nombre a sus descubridores) se fabrica con bacilos vivos atenuados y por tanto no es contagiosa de esta enfermedad.
Hoy día se están desarrollando y probando nuevos tipos de vacunas:
  • Polisacarídicas: ciertas bacterias tienen capas externas de polisacáridos que son mínimamente inmunitarios. Poniendo en contacto estas capas externas con proteínas, el sistema inmunitario puede ser capaz de reconocer el polisacárido como si fuera un antígeno (un antígeno puede ser una proteína o un polisacárido). De esa manera generamos anticuerpos contra la bacteria y contra el polisacárido (exopolisacárido, en este caso). Este proceso es usado en la vacuna Haemophilus influenzae del tipo B (también conocido como bacilo de Pfeiffer).
  • Vector recombinante: combinando la fisiología (cuerpo) de un microorganismo dado y el ADN (contenido) de otro distinto, la inmunidad puede ser creada contra enfermedades que tengan complicados procesos de infección. Los esfuerzos para crear vacunas contra las enfermedades infecciosas, así como inmunoterapias para el cáncer, enfermedades autoinmunes y alergias han utilizado una variedad de sistemas de expresión heteróloga, incluyendo vectores virales y bacterianos, así como construcciones recombinantes de ADN y ARN.9 Los vectores más utilizados en este tipo de vacunas son el virus vaccinia, algunas bacterias lácticas (no patogénicas) de los géneros Lactobacillus y Lactococcus y variedades atenuadas de M. tuberculosis y Salmonella typhi (ésta última se utiliza más, dado que se conoce muy bien y sus efectos patogénicos son mucho más suaves). Los principales problemas de este tipo de vacunas son la posibilidad de que la respuesta inmunitaria ante ellas sea insuficiente para dejar memoria en el sistema inmune y la inducción de la producción del antígeno una vez el vector está dentro del organismo (se está estudiando el uso de inductores como la tetraciclina y la aspirina).
  • Vacuna de ADN: vacuna de desarrollo reciente, es creada a partir del ADN de un agente infeccioso. Funciona al insertar ADN de bacterias o virus dentro de células humanas o animales. Algunas células del sistema inmunitario reconocen la proteína surgida del ADN extraño y atacan tanto a la propia proteína como a las células afectadas. Dado que estas células viven largo tiempo, si el agente patógeno (el que crea la infección) que normalmente produce esas proteínas es encontrado tras un periodo largo, serán atacadas instantáneamente por el sistema inmunitario. Una ventaja de las vacunas ADN es que son muy fáciles de producir y almacenar. Aunque en 2006 este tipo de vacuna era aún experimental, presenta resultados esperanzadores. Sin embargo no se sabe con seguridad si ese ADN puede integrarse en algún cromosoma de las células y producir mutaciones.
Es importante aclarar que, mientras la mayoría de las vacunas son creadas usando componentes inactivados o atenuados de microorganismos, las vacunas sintéticas están compuestas en parte o completamente de péptidoscarbohidratos o antígenos. Estas sintéticas suelen ser consideradas más seguras que las primeras.

Resultado de imagen para vacunas

QUE ES UNA VACUNA.


Una vacuna es una preparación biológica que proporciona inmunidad adquirida activa ante una determinada enfermedad. Una vacuna contiene típicamente un agente que se asemeja a un microorganismo causante de la enfermedad y a menudo se hace a partir de formas debilitadas o muertas del microbio, sus toxinas o una de sus proteínas de superficie. El agente estimula el sistema inmunológico del cuerpo a reconocer al agente como una amenaza, destruirla y guardar un registro del mismo, de modo que el sistema inmune puede reconocer y destruir más fácilmente cualquiera de estos microorganismos que encuentre más adelante. Las vacunas pueden ser profilácticas (ejemplo: para prevenir o aminorar los efectos de una futura infección por algún patógeno natural o "salvaje") o terapéuticas(por ejemplo, también se están investigando vacunas contra el cáncer).
La administración de vacunas se llama vacunación. La efectividad de la vacunación ha sido ampliamente estudiado y confirmada; por ejemplo, la vacuna contra la influenza,1 la vacuna contra el VPH,2 y la vacuna contra la varicela.3 La vacunación es el método más eficaz de prevenir las enfermedades infecciosas;4 la inmunidad generalizada debido a la vacunación es en gran parte responsable de la erradicación mundial de la viruela y la restricción de enfermedades como la poliomielitis, el sarampión y el tétanos en la mayoría del mundo. La Organización Mundial de la Salud (OMS) informa que las vacunas autorizadas están disponibles actualmente para prevenir o contribuir a la prevención y control de veinticinco infecciones.5
Los términos vacuna y vacunación derivan de variolae vaccinae (viruela de la vaca), término acuñado por Edward Jenner para denotar la viruela bovina. Lo utilizó en 1798 en el largo título de su Investigación sobre la ... variolae vaccinae ... conocido ... [como] ... la viruela bovina, en el que describió el efecto protector de la viruela bovina contra la viruela humana.6 En 1881, en ​​honor a Jenner, Louis Pasteurpropuso que los términos deben ampliarse para cubrir las nuevas inoculaciones de protección que entonces se estaban desarrollando.

METABOLISMO.


El hígado es el órgano principal donde se produce el metabolismo de los fármacos (modificaciones químicas), pero no es el único. Algunos metabolitos tienen actividad farmacológica (v. tabla 298-2). Cuando la sustancia administrada es inactiva pero da lugar a un metabolito activo, el compuesto administrado se denomina profármaco, especialmente si ha sido diseñado para liberar eficazmente el principio activo.

Reacciones metabólicas[editar]

El metabolismo de los fármacos supone un amplio espectro de reacciones químicas:
  • oxidación,
  • reducción,
  • hidrólisis,
  • hidratación,
  • conjugación,
  • condensación
  • isomerización.
Las enzimas implicadas en estas reacciones están presentes en numerosos tejidos, pero, por lo general, se encuentran más concentradas en el hígado. Para muchos fármacos, el metabolismo se produce en dos fases. Las reacciones de fase I suponen la formación de un nuevo grupo funcional o una partición de la molécula (oxidación, reducción, hidrólisis); se trata de reacciones no sintéticas.
Las reacciones de fase II conllevan la conjugación con un compuesto endógeno (p. ej., ácido glucurónico, sulfato, glicina); se trata, pues, de reacciones sintéticas. Los metabolitos formados en las reacciones sintéticas son más polares y más fácilmente excretados por el riñón (en la orina) y por el hígado (en la bilis) que los formados en las reacciones no sintéticas. Algunos fármacos sufren procesos de metabolismo de ambos tipos. Pese a que se denominan fasesI y II, se trata, como puede verse, de una clasificación funcional, no secuencial, de las reacciones de metabolismo de fármacos.

BARRERA HEMATOENCEFALICA.


Los fármacos llegan al SNC por la circulación capilar y a través del LCR. Aunque el cerebro recibe una proporción importante del volumen minuto (aproximadamente 1/6), la distribución de los fármacos en el cerebro está restringida. Algunos fármacos liposolubles (como el tiopental) entran y ejercen sus efectos rápidamente, pero muchos otros -en particular los más hidrosolubles- penetran en el cerebro con mayor lentitud. Las células endoteliales de los capilares cerebrales están más estrechamente unidas entre sí que las de los demás lechos capilares del organismo; esto contribuye a la lenta penetración de las sustancias hidrosolubles. Otra barrera importante para los fármacos hidrosolubles son las células del tejido glial (los astrocitos) que forman una vaina pegada a la membrana basal del endotelio capilar.
El endotelio capilar y la vaina astrocítica constituyen la barrera hematoencefálica. Esta barrera es la que confiere las características diferenciales de permeabilidad entre estos tejidos y los del resto del organismo, en los que la barrera corresponde a la pared capilar y no a la célula parenquimatosa. Así, los compuestos polares son incapaces de penetrar en el cerebro, pero pueden acceder al líquido intersticial de la mayoría de los demás tejidos. El concepto de barrera hematoencefálica se definió tras la observación de que los colorantes polares podían penetrar en la mayoría de los tejidos, pero no en el SNC.
Los fármacos pueden pasar directamente al LCR ventricular a través del plexo coroideo, y tienen acceso al tejido cerebral por difusión pasiva desde el LCR. El plexo coroideo también es una zona de transporte activo de ácidos orgánicos (como la penicilina) desde el LCR a la sangre.
Los factores principales que determinan la velocidad de penetración en el LCR o en otras células son el grado de fijación a las proteínas, el grado de ionización y el cociente de partición lípido/agua del compuesto. La velocidad de penetración en el cerebro es lenta en los fármacos que se unen en gran proporción a proteínas. En el caso de ácidos y bases débiles ionizados, la penetración es tan lenta que se considera prácticamente inexistente.
En otros tejidos del organismo, la perfusión es el determinante principal de la velocidad de distribución, pero el SNC está tan bien perfundido que el factor más importante suele ser la permeabilidad. Sin embargo, en los tejidos poco perfundidos (p. ej., el músculo y el tejido adiposo), la distribución se prolonga notablemente, sobre todo si el tejido tiene mucha afinidad por el fármaco.

miércoles, 26 de octubre de 2016

PARÁMETROS FARMACOCINETICOS BÁSICOS.


El comportamiento farmacocinético de la mayoría de los fármacos puede resumirse por medio de algunos parámetros. Los parámetros son constantes, aunque sus valores pueden diferir de un paciente a otro y, en el mismo enfermo, en situaciones distintas.
La biodisponibilidad expresa el grado de absorción por la circulación sistémica.
La constante de absorción define la velocidad de absorción.
Las modificaciones de estos dos parámetros influyen sobre la concentración máxima, el tiempo que tarda en alcanzarse la concentración máxima y el área bajo la curva (ABC) concentración-tiempo tras una dosis oral única.
En los tratamientos crónicos, el grado de absorción es la medida más importante por la que se relaciona con la concentración media, mientras que el grado de fluctuación depende de la constante de absorción.
El volumen aparente de distribución es el líquido teórico corporal en que tendría que haberse disuelto el fármaco para alcanzar la misma concentración que en el plasma. Se usa para saber la dosis requerida para alcanzar una concentración determinada en la sangre. La fracción libre es útil porque relaciona la concentración total con la libre, que es quién, presumiblemente, está más asociada con los efectos farmacológicos. Es un parámetro útil sobre todo si se altera la fijación a las proteínas plasmáticas, por ejemplo en caso de hipoalbuminemia, de enfermedad renal y/ó hepática y en interacciones por desplazamiento de la unión a dichas proteínas. El volumen aparente de distribución y la fracción libre son los parámetros más utilizados para el estudio de la distribución del fármaco.
La velocidad de eliminación de un fármaco del organismo es proporcional a su concentración plasmática. El parámetro que relaciona a ambas medidas es el aclaramiento total o clearance, que es la suma del aclaramiento renal más el aclaramiento extrarrenal o metabólico.
La fracción de fármaco eliminado sin cambios (en forma inalterada) es un parámetro útil para evaluar el efecto potencial de las enfermedades renales y hepáticas sobre la eliminación de los fármacos. Una fracción baja indica que el metabolismo hepático es el mecanismo de eliminación y que una enfermedad hepática podría afectar la eliminación del fármaco. Las patologías renales producen mayores efectos en la cinética de fármacos con elevada fracción de fármaco eliminado inalteradamente.
La velocidad con que se extrae un fármaco de la sangre por un órgano excretor como el hígado no puede exceder la velocidad a la que llega a dicho órgano. Es decir, el aclaramiento presenta un valor límite. Cuando la extracción es elevada, la eliminación está limitada por la llegada de fármaco al tejido y, por tanto, por la perfusión de éste. Cuando el órgano de eliminación es el hígado o la pared intestinal y el fármaco se administra vía oral, una porción de la dosis administrada puede ser metabolizada durante su paso obligado a través de los tejidos hasta la circulación sistémica; es lo que se denomina efecto o metabolismo de primer paso hepático.
Por tanto, siempre que una sustancia tenga una extracción (aclaramiento) elevada en hígado o pared intestinal, la biodisponibilidad por vía oral, será baja, hasta el punto que a veces puede desaconsejar la administración vía oral,. o requerir la administración de una dosis oral muy superior a la dosis parenteral equivalente.

QUE SON LOS MEDICAMENTOS.





Un medicamento es uno o más fármacos, integrados en una forma farmacéutica, presentado para expendio y uso industrial o clínico, y destinado para su utilización en las personas o en los animales, dotado de propiedades que permitan el mejor efecto farmacológico de sus componentes con el fin de prevenir, aliviar o mejorar el estado de salud de las personas enfermas, o para modificar estados fisiológicos.
Desde las más antiguas civilizaciones el hombre ha utilizado como forma de alcanzar mejoría en distintas enfermedades productos de origen vegetal, mineral, animal o en los últimos tiempos sintéticos.1 El cuidado de la salud estaba en manos de personas que ejercen la doble función de médicos y farmacéuticos. Son en realidad médicos que preparan sus propios remedios curativos, llegando alguno de ellos a alcanzar un gran renombre en su época, como es el caso del griego Galeno (130-200 d.C.). De él proviene el nombre de la Galénica, como la forma adecuada de preparar, dosificar y administrar los fármacos. En la cultura romana existían numerosas formas de administrar las sustancias utilizadas para curar enfermedades. Así, se utilizaban los electuarios como una mezcla de varios polvos de hierbas y raíces medicinales a los que se les añadía una porción de miel fresca. La miel además de ser la sustancia que sirve como vehículo de los principios activos, daba mejor sabor al preparado. En ocasiones se usaba azúcar. También se utilizaba un jarabe, el cual ya contenía azúcar disuelta, en vez de agua y el conjunto se preparaba formando una masa pastosa. Precisamente Galeno hizo famosa la gran triaca a la que dedicó una obra completa, y que consistía en un electuario que llegaba a contener más de 60 principios activos diferentes. Por la importancia de Galeno en la Edad Media, se hizo muy popular durante esta época dejando de estar autorizada para su uso en España en pleno siglo XX.

QUE ES LA MEDICINA DEPORTIVA.


La medicina del deporte es la especialidad médica que estudia los efectos del ejercicio del deporte y, en general, de la actividad física, en el organismo humano, desde el punto de vista de la prevención y tratamiento de las enfermedades y lesiones. También, esta especialidad va adquiriendo día a día un mayor protagonismo dentro del campo de las ciencias de la salud. Además, se reconoce que el ejercicio produce beneficios sobre todo en enfermedades cardiovasculares, osteomusculares, metabólicas, y para mejorar el estado físico en general por medio de la prevención y promoción en salud. Por seguridad se debe formular como si fuera un medicamento, para definir las dosis, tipo, duración, frecuencia, y las pruebas de tolerancia.1 También se le denomina medicina del deporte, medicina de la actividad física, medicina de la educación física, medicina del ejercicio, medicina especializada en deportología. Algunos opinan que el término medicina deportiva, aunque utilizado por algunos medios de comunicación, no es de uso correcto, al igual que no es correcto el término medicina trabajadora, sino medicina del trabajo. En forma análoga el término correcto es medicina del deporte.
Está reconocida como una rama de la medicina por lo que existen cursos en diversas universidades, sea dentro de una maestría, especialización, subespecialización, Curso Tutelar o Curso Básico.
Esta diversidad da como resultado que la orientación primaria del especialista en medicina deportiva puede variar según el país de que se trate. Así, en algunos países el médico deportivo es preferentemente un médico clínico, en otros es un médico traumatólogo que se dedica a atender lesiones del deporte o también se trata de un especialista o subespecialista en ergometría o pruebas de esfuerzo, en rehabilitación de pacientes diabéticos, o en prevención de enfermedades cardiovasculares.
Las ramas y disciplinas de la medicina deportiva incluyen las básicas (anatomía, fisiología, biomecánica del ejercicio, etc), las clínicas (Prevención, tratamiento y rehabilitación de lesiones y enfermedades) y otras ciencias aplicadas al deporte (psicología, nutrición, entrenamiento en el deporte, metrología, cineantropometría, etc).
Los principales cometidos de la medicina deportiva son:
  • Misión preventiva.
  • Misión orientadora.
  • Misión curativa.

Heart diagram blood flow en.svg

LA MEDICINA FORENSE.


La medicina forense, también llamada medicina legaljurisprudencia médica o medicina judicial, es la rama de la medicina que aplica todos los conocimientos médicos y biológicos necesarios para la resolución de los problemas que plantea el derecho. El médico forense auxilia a jueces y tribunales en la administración de justicia, determinando el origen de las lesiones sufridas por un herido o la causa de la muerte mediante el examen de un cadáver. Estudia los aspectos médicos derivados de la práctica diaria de los tribunales de justicia, donde actúan como peritos. Se vincula estrechamente con el derecho médico. El médico especialista en el área recibe el nombre de médico legista o médico forense.

Comúnmente llamada medicina forense (de foro: por ser en la antigüedad en los foros o tribunales donde se desempeñaba esta disciplina), actualmente se distinguen dos escuelas: la escuela latina, en donde son formados los médicos legistas, y la escuela anglosajona, en donde se forman médicos forenses.

LA FARMACOLOGÍA.


La farmacología (del griegopharmacon (φάρμακον), fármaco, y logos (λόγος), ciencia)1 es la ciencia que estudia la historia, el origen, las propiedades físicas y químicas, la presentación, los efectos bioquímicos y fisiológicos, los mecanismos de acciónla absorción, la distribución, la biotransformación y la excreción así como el uso terapéutico de las sustancias químicas que interactúan con los organismos vivos. La farmacología estudia como interactúa el fármaco con el organismo, sus acciones y propiedades.2 En un sentido más estricto, se considera la farmacología como el estudio de los fármacos, sea que ésas tengan efectos beneficiosos o bien tóxicos. La farmacología tiene aplicaciones clínicas cuando las sustancias son utilizadas en el diagnóstico, prevención y tratamiento de una enfermedad o para el alivio de sus síntomas.

Cualquier sustancia que interactúa con un organismo viviente puede ser absorbida por éste, distribuida por los distintos órganos, sistemas o espacios corporales, modificada por procesos químicos y finalmente expulsada.
La farmacología estudia estos procesos en la interacción de fármacos con el hombre y animales, los cuales se denominan:
El estudio de estos procesos es lo que se conoce como farmacocinética. De la interacción de todos estos procesos, la farmacología puede predecir la biodisponibilidad y vida media de eliminación de un fármaco en el organismo dadas una vía de administración, una dosis y un intervalo de administración.
Para que el fármaco ejerza su acción sobre este blanco, debe, generalmente, ser transportado a través de la circulación sanguínea.

QUE ES LA GERIATRÍA.


La Geriatría es una especialidad médica dedicada al estudio de la prevención, el diagnóstico, el tratamiento y la rehabilitación de las enfermedades en las personas de la tercera edad.1
La Geriatría resuelve los problemas de salud de los ancianos en el área hospitalaria y en la comunidad; sin embargo, la Gerontologíaestudia los aspectos psicológicos, educativos, sociales, económicos y demográficos de la tercera edad.
Esta especialidad médica está implantada en al menos 14 países: España, Finlandia, Irlanda, Islandia, Liechtenstein, Noruega, Países Bajos, Rusia, Suecia, México, Argentina, Uruguay, Perú, Colombia y Venezuela.2 3
El paciente geriátrico se define como aquel que cumple tres o más de las siguientes condiciones:
  • Generalmente mayor de 75 años.
  • Pluripatología relevante.
  • Alto riesgo de dependencia.
  • Presencia de patología mental acompañante o predominante.

Su objetivo prioritario es la recuperación funcional del anciano enfermo e incapacitado para conseguir el máximo nivel posible de autonomía e independencia, facilitando así su reintegración a una vida autosuficiente en su domicilio y entorno habitual.4
Los fines propios de esta especialidad son:
  1. El desarrollo de un sistema asistencial a todos los niveles, que atienda las múltiples alteraciones y los problemas médico-sociales de los ancianos, que de forma aguda y subaguda presentan como rasgos comunes la pérdida de su independencia física o social.
  2. La movilización de todos los recursos para integrar a la comunidad el mayor número de ancianos que se pueda.
  3. La organización de una asistencia prolongada a los ancianos que lo necesiten.
  4. La investigación, la docencia y la formación continuada de sus propios especialistas y del todo relacionado con dicha especialidad.

HOSPITAL DE MUJERES.


Se denominó Hospital de Mujeres a una institución sanitaria dedicada a asistir a mujeres.

El Hospital de Nuestra Señora del Carmen situado en la ciudad de Cádiz (España) es un edificio barroco de mediados del siglo XVIII, y es obra de Pedro Luis Gutiérrez de San Martín, maestro sevillano, (1705-1792).
Inaugurado el 16 de octubre de 1749, el Hospital de Mujeres fue testigo y sirvió de ayuda en los acontecimientos difíciles que vivieron la nación y la ciudad, como las epidemias del siglo XIX, el desastre del 98, la guerra de África, o la Guerra Civil. La falta de medios económicos obligó al Obispo Antonio Añoveros a la clausura del hospital en 1963, y es, desde entonces la sede del Obispado de Cádiz y Ceuta que dedica gran parte del edificio a la institución diocesana de Cáritas, desde donde se coordina, elaboran y fomentan proyectos y programas para los más necesitados a través del Fondo Diocesano de Solidaridad y otras fuentes de financiación, entre otras actividades.

Resultado de imagen para Hospital de Mujeres